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Metastable States, Transitions, Basins and Borders
at Finite Temperatures
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Langevin/Fokker-Planck processes can be immersed in a larger frame by add-
ing fictitious fermion variables. The (super) symmetry of this larger structure
has been used to derive Morse theory in an elegant way. The original phys-
ical diffusive motion is retained in the zero-fermion subspace. Here we study
the subspaces with non-zero fermion number which yield deep information, as
well as new computational strategies, for barriers, reaction paths, and unstable
states – even in non-zero temperature situations and when the barriers are of
entropic or collective nature, as in the thermodynamic limit. The presentation is
self-contained.
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1. INTRODUCTION

Many systems have a dynamics with processes which take place on distinct
timescales. The most familiar example is the diffusion in a many-valley
energy E(x) landscape at low temperatures:

ẋi =− ∂E
∂xi

+
√

2T ηi, (1)

which consists of rapid gradient descents into local minima, and slow
‘activated’ transitions between minima induced by the thermal noise ηi
(Gaussian independent white noises of unit variance). The relevant param-
eter is the inverse temperature β=1/T : the larger β the more pronounced
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the gap between fast intra-valley relaxations and slow activation processes
ln(tslow) ∼ β�E.(1) Another example is that of cooperative systems at
finite temperature. Consider for example a d-dimensional ferromagnet in
a magnetic field h pointing upward: the state with negative magnetization
becomes unstable, its decay taking a time ln(tslow)∝ h−(d−1), the param-
eter controlling the timescale separation is the inverse of the field. In the
absence of field, the slow relaxation takes a time ln(tslow)∝Ld−1, and the
control parameter is the size L.(2) From a conceptual point of view, it is
important in these situations to characterize the relevant structures: meta-
stable states and their basins of attraction, the reaction paths joining them,
and the timescales involved. On the other hand, in order to efficiently
model realistic situations, one needs to be able to treat the rare ‘activated’
passages in a specific way.

Quite generally, a separation between timescales implies the existence
of metastable states, defined as probability distributions corresponding to
situations in which everything fast has happened and everything slow has
not taken place. If there are more than two timescales, for example tf ast �
tinterm � tslow one has metastable states at tinterm, and a different set of
metastable states at tslow, the latter resulting from the fusion or the decay
of states defined for tinterm. Given how natural the concept of metasta-
bility is, it may come as a surprise that only recently has a construction
of metastable states based on the stochastic dynamics been fully estab-
lished.(3)

The idea is simple: the probability associated with Eq. (1) evolves
through:(14)

dP (x, t)

dt
= −HFP P (x, t),

HFP = −
N∑
i=1

∂

∂xi

(
T
∂

∂xi
+E,i

)
, (2)

(from here onward we denote derivatives as A,i ≡ ∂A
∂xi

and A,ij ≡ ∂2A
∂xi∂xj

)
where HFP is the Fokker-Planck operator and N the number of dimen-
sions of the space. It turns out(3) that if there is a separation of timescales
tf ast � tslow in the system, the spectrum of HFP has a gap: there are (say)
K eigenvalues of the order of t−1

slow and all other eigenvalues are at least
of the order of t−1

f ast . Furthermore, one can show that, in the limit of large
timescale separation, irrespective of its origin, one can construct exactly K
probability distributions corresponding to distinct metastable states by lin-
ear combinations of the K eigenstates ‘below the gap’. The low temper-
ature example is particularly clear: in that case these K distributions are
Gaussians of width

√
T sitting at each of the K local minima.
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In a situation with metastability, it becomes interesting and in prac-
tice necessary to evaluate the time of decay, as well as the spatial proba-
bility distribution of the escape current (i.e. the reaction paths). This may
involve identifying the barrier or ‘bottleneck’ responsible for the slowness
of decay. In the low temperature example, the reaction paths are simply
gradient lines connecting two energy minima through a saddle with one
unstable direction (of index one). The bottlenecks are these saddle-points,
and there is a considerable variety of methods for their location in high
dimensional space.(15)

Now, there is a construction that naturally incorporates saddle points,
and that has been successfully used to derive the relations between the
numbers of saddle points of a function (the energy here) and the topolog-
ical properties of the manifold on which it is defined. These relations are
the so-called Morse inequalities,(16) and have been rederived in an elegant
and elementary way by Witten.(17) The construction is a ‘completion’ of
the diffusive problem as follows. First express the Fokker-Planck operator
in a basis in which it is manifestly Hermitian:(14)

Hh
FP = eβE/2HFP e−βE/2 = 1

T

N∑
i=1

[
−T 2 ∂

2

∂x2
i

+ 1
4
E2
,i −

T

2
E,ii

]
. (3)

Second, ‘complicate’ the operator and the space by introducing N ferm-
ions a†

i , ai , with i=1, . . . ,N , and:

Hh = Hh
FP +

N∑
ij=1

E,ij a
†
j ai

= 1
T

N∑
i

[
−T 2 ∂

2

∂x2
i

+ 1
4
E2
,i −

T

2
E,ii

]
+

N∑
ij=1

E,ij a
†
j ai = (Hh)†. (4)

Within zero-fermion subspace, Hh is just the Hermitian form of the
Fokker-Planck operator, and, as we have remarked, for low temperatures
its eigenstates ‘below the gap’ are related to local minima.

The wave-functions with one or more fermions are so far a spurious
addition. Their interest stems from the fact that one can show that there is
a gap in all the spectra associated with any fermion number, and the states
‘below the gap’ having one fermion are for low temperatures peaked on
saddles with one unstable direction, those having two fermions on saddles
with two unstable directions, and in general those with p fermions on sad-
dles of index p. Using this fact and the symmetries of Hh, it is then easy
to derive Morse inequalities(17) – we shall review this in Section 3.
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The basis that makes HFP Hermitian as in Eq. (3) (we shall in what
follow refer to it as the ‘Hermitian basis’) offers the direct way to get to
Morse theory, and is the one most often used in the field theory literature.
Here, we are mainly interested in the diffusive interpretation, at least of the
original zero-fermion subspace, and for this we must go back to the original
basis.(18) The change from the Hermitian to the original basis is made by
a multiplication by eβE/2, and is quite tricky since it is exponentially large
in the relevant parameter — β if we are interested in the low temperature
limit, or the system size for macroscopic systems. Because of this reason,
one has to be very careful because negligible, large deviations in one basis
become of O(1) in the other. Indeed, the strategy we shall follow in this
paper is to rederive the limit wave functions in each basis from scratch.

A first question we may ask is how do the eigenstates ‘below the gap’
with fermion number larger than zero look, for low temperatures, in the
original basis in which

H =HFP +
N∑
ij=1

E,ij a
†
j ai = e−βE/2HheβE/2. (5)

The outcome, as we shall see, is a pleasant surprise: for example one fer-
mion (right) eigenstates ‘below the gap’ are concentrated not on the sad-
dle, but along a narrow (width ∼ √

T ) tube following the gradient line
joining minima and passing through the saddle – the reaction path. Higher
fermion number subspaces (and left eigenstates) also encode interesting
information.

The construction yielding Morse theory relies on the low-temperature
limit, in which functions peak on the appropriate structures. Low tem-
peratures are just one instance of evolution with widely separated scales.
One is naturally led to ask what happens with the construction we have
described in the presence of a timescale separation generated by some
other (collective, entropic. . . ) mechanism. Again, the answer is pleasant:
for example the one fermion eigenstates ‘below the gap’ of (5) yield the
reaction current distributions between metastable states (the latter defined
dynamically as outlined after Eq. (2)). This generalization will give us
practical strategies for the evaluation of reaction paths, valid whenever
there is timescale separation. From a more abstract point of view, it will
yield a precise definition of ‘free energy barrier’ in a natural way, without
having to rely on mean-field or any other approximation.

Let us write, for a generic wavefunction |ψ〉, an evolution equation:

d|ψ〉
dt

=−H |ψ〉. (6)
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Specializing ψ to zero fermions we recover the Fokker-Planck equation
(2). Consider now Eq. (6) but within the one-fermion subspace, in which
functions are of the form |ξR〉 = ∫

dNx
∑N
c=1Rc(x)|x〉a†

c |−〉, with |x〉 the
basis in space and |−〉 the fermion vacuum. It amounts to an evolution
for a vector function R(x, t)= (R1(x, t), . . . ,RN(x, t)):

dRc(x, t)

dt
=−HFP Rc(x, t)−

N∑
b=1

∂2E

∂xc∂xb
Rb(x, t). (7)

Equation (7) is one of the main instruments of this paper. It evolves a vec-
tor field R(x, t) so that it rapidly becomes a linear combination of one fer-
mion states ‘below the gap’.

In a system with metastable states, starting from an initial condition,
the probability distribution P(x, t) evolves rapidly to a quasi-stationary
distribution corresponding to quasi-equilibrium within one or more meta-
stable states. At longer timescales, P(x, t) will be gradually concentrated
on new, more stable metastable states. If we choose the initial condition to
be close to a state, we get a quick thermalization within such a state. What
we have been discussing up to now suggests that Eq. (7) does for reaction
currents what the Fokker-Planck equation does for states: depending on
the initial conditions, R(x, t) tends rapidly to a reaction current between
metastable states, which, in the particular case of very low temperatures,
is a single reaction path. As time passes, other new current distributions
start contributing to R(x, t).

The main point is that while escape from a state takes by assumption
long times for the probability distribution P(x, t), convergence to a reac-
tion current is for R(x, t) immediate (or more precisely, of the same order
of the time it takes for P(x, t) to stabilize in the closest state). Now, a
whole set of practical methods, such as simulated annealing and transition
path sampling, can be seen as ways of implementing the Fokker-Planck
equation — the former in a diffusive and the latter in a functional way.
The same can be done with Eq. (7): we shall give in this paper a diffu-
sion equation which is to Eq. (7) what the Langevin process is to Eq. (2),
and a path-sampling procedure based on Eq. (7) which has the peculiarity
that the paths pile up on the barriers.

To conclude this rather technical introduction, let us summarize what
we do in this paper. We first (Section 2) introduce the supersymmetric con-
struction in detail, stressing in particular the relation between the original
Fokker-Planck basis and the Hermitian basis. As a first example, in Sec-
tion 3 we rederive Morse theory for the case of smooth potentials in a
simply connected space.
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In Section 4, after briefly reviewing the dynamic definition of meta-
stable states, we analyze in detail the structure of the one fermion sub-
space, showing that it contains the reaction paths and also ‘loops’: reac-
tions leading from a state to itself. Although for clarity we always keep
the low-temperature case in mind, the developments are valid whatever the
origin of the timescale separation.

In Section 5 we summarize the structure in all fermion subspaces. For
the low-temperature case we discuss the form of all eigenstates ‘below the
gap’. The derivation of these results can be made in an explicit way using
a diffusive dynamics we introduce in Section 6, which plays for the higher
fermion number subspaces the role that Langevin equation plays for the
zero-fermion Fokker-Planck evolution.

In Section 7 we construct a path-sampling process to locate reaction
paths, in which the trajectories are weighed with the usual Langevin action
plus a Lyapunov exponent associated to each trajectory.

2. SUPERSYSMETRIC QUANTUM MECHANICS AND

FOKKER-PLANCK EQUATION

We assume that E(x) is two times differentiable and that the Gibbs
measure exists:

∫
RN
dNx e−βE <∞. (8)

The dynamics of the system is given by the Langevin equation (1). The
probability distribution will evolve according to the Fokker Planck equa-
tion (2), which can be seen as a continuity equation for the current:(14)

Ji(x, t)≡
(
T
∂

∂xi
+E,i

)
P(x, t). (9)

We introduce at this point N fermion creation and annihilation operators
a

†
i and ai , with anticommutation relations [ai, a

†
j ]+ =δij ; the fermion num-

ber operator is Nf =∑N
i=1 a

†
i ai . We denote states in the coordinate space

as |ψ〉 and ψ(x)≡ 〈x|ψ〉, using the Dirac bra-ket notation of Quantum
Mechanics; the zero-fermion state is |−〉, and we denote states in the prod-
uct space (coordinate ⊗ fermions) with boldface. We say that |ψ〉 has n
fermions if:

Nf |ψ〉=n|ψ〉. (10)
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We define the ‘charges’

Q̄=−i
N∑
i=1

(T
∂

∂xi
+E,i)a†

i ; Q=−iT
N∑
i=1

∂

∂xi
ai, (11)

which satisfy:

Q̄2 =Q2 =0. (12)

We can write the operator

H = 1
T
(Q̄+Q)2 = 1

T
[Q̄,Q]+ =HFP +

N∑
ij=1

E,ij a
†
j ai, (13)

where

[H,Q]= [H,Q̄]=0. (14)

H commutes with the fermion number operator Nf , so that eigenstates
are classified according to their fermion number. Within the zero-fermion
space, H is the original Fokker-Planck operator. These relations are true
only for the Fokker-Planck equation with the drift forces at least locally
a gradient. Q and Q̄ commute with H and transform states with an
even number of fermions (bosonic states) into those with an odd num-
ber of fermions (fermionic states) and vice-versa, hence the name ‘super-
symmetry’. What we have done up to now can be seen as completing
the square, and making symmetries underlying the Fokker-Planck equa-
tion with gradient forces explicit.

One can now make a change of basis such that the charges become
Hermitian conjugates of one another:

Qh = eβE/2Qe−βE/2 =−i
N∑
i=1

(T
∂

∂xi
− 1

2
E,i)ai,

(15)

Q̄h = eβE/2Q̄e−βE/2 =−i
N∑
i=1

(T
∂

∂xi
+ 1

2
E,i)a

†
i = (Qh)†.
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In the new basis we have the Hermitian equivalent of Eq. (13):

Hh = 1
T

[Q̄h,Qh]+ = 1
T
(Q̄h+Qh)2 =Hh

FP +
N∑
ij=1

E,ij a
†
j ai

= 1
T

N∑
i=1

[
−T 2 ∂

2

∂x2
i

+ 1
4
E2
,i −

T

2
E,ii

]
+

N∑
ij=1

E,ij a
†
j ai = (Hh)†. (16)

Hh
FP has now the standard form of a Schrödinger operator (acting in

imaginary time) with T playing the role of �. On the other hand Hh is
the standard Hamiltonian of Supersymmetric Quantum Mechanics.(24)

As the original operators HFP and H are not hermitian we will have
two different eigenvalue equations, one for the right eigenstates (|ψR〉) and
one for the left eigenstate (〈ψL|)

H |ψR〉=λ|ψR〉; 〈ψL|H =λ〈ψL|, (17)

while in the Hermitian basis there will be only one equation

Hh|ψh〉=λ|ψh〉. (18)

The three states are related by

|ψR〉= e−βE/2|ψh〉; |ψL〉= eβE/2|ψh〉. (19)

It is clear that H and Hh have the same spectrum. Furthermore, the rela-
tion:

H † =−
N∑
i=1

∂

∂xi

[
T
∂

∂xi
−E,i

]
−

N∑
ij=1

E,ij aj a
†
i , (20)

implies that a left k-fermion eigenstate of H is an N − k right eigenstate
of the problem with the inverted potential −E.

From Eqs. (13) and (4), we see that H and Hh have non-negative
eigenvalues. By construction, there is at least one eigenstate |ψ0h〉 corre-
sponding to the eigenvalue λ=0 (the smallest possible):

|ψ0h〉 ∝ e−βE/2 ⊗|−〉,
|ψ0R〉 ∝ e−βE ⊗|−〉, (21)
|ψ0L〉 ∝ constant |−〉.
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0 321

Q = Q =

Fig. 1. The pairing of the energy levels for a generic spectrum. Each eigenstate of positive
energy has a supersymmetric partner. The number of fermions is written below each corre-
sponding column. The only unpaired state is the zero-energy one.

In order for |ψ0h〉 to be normalizable we need the convergence of the
integral (8).

The left and right eigenstates (22) have zero fermions and, thus, they
belong also to the spectrum of HFP . Clearly, both Q and Q̄ annihilate
|ψ0R〉. It is easy to show (see Appendix A) that this is necessary for any
zero eigenvector, and indeed Eq. (22) are the only ones with this property
if the space has no holes.

In general applying Q to any eigenstate |ψR〉 we get either a degener-
ate eigenstate with one less fermion or zero. Similarly, applying Q̄ we get
either a degenerate eigenstate with one more fermion or zero. Each non-
zero energy eigenstate |ψR〉, annihilated by Q, can be written as |ψR〉 =
Q|χR〉, and the same holds for Q̄. Indeed, from the eigenvalue equation

H |ψR〉= 1
T
(Q̄Q+QQ̄)|ψR〉= 1

T
QQ̄|ψR〉=λ|ψR〉, (22)

one can infer that

|χR〉= 1
T λ
Q̄|ψR〉, (23)

satisfies Q|χR〉= |ψR〉.
In conclusion, each non-zero energy eigenstate with k fermions, will

have one and only one supersymmetric partner with either k− 1 or k+ 1
fermions. In a space with no holes the only eigenstate with zero energy has
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zero fermions and is the Gibbs measure (See Appendix A). The spectrum
is organized as in Fig. 1.

3. MORSE THEORY

In the low temperature limit, the organization of the spectrum of Hh

allows to derive relations concerning the critical points (saddles) of the
energy surface, defined as those points for which

|∇E|2 =
N∑
i=1

E2
,i =0. (24)

Let us study the semiclassical low-T spectrum. At the lowest order in
T , the potential appearing in the Schrödinger operator (4)

W = 1
T

N∑
i=1

1
4
E2
,i , (25)

is very large except at the critical points of E; so the eigenstates of
Hh with low-lying eigenvalues are concentrated around the those critical
points.

Let us assume that the critical points are isolated and the Hessian
E,ij has non zero eigenvalues. Then, as usual, the semiclassical devel-
opment starts with a harmonic approximation around each minimum of
W . Consider one of these minima, where the Hessian has eigenvalues
A1, . . . ,AN . We can develop E in the local coordinates, and going to the
basis in which the Hessian E,ij is diagonal, we have that, locally:

E(x′)∼E0 + Ai

2
x

′2
i . (26)

We can develop H at the first order in T as

T

2
H ′ =

N∑
i=1

{
−T

2

2
∂2

∂x
′2
i

+ 1
2

(
Ai

2

)2

x
′2
i − T

4
Ai + T

2
Aia

′†
i a

′
i

}
. (27)

We recognize the Hamiltonian of N independent oscillators plus N inde-
pendent fermion terms. Along each direction i on the right hand side, we
have a harmonic oscillator with positive frequency |Ai |, plus terms which
give −Ai/2 if there is no fermion and +Ai/2 if there is a fermion along
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the direction i. Hence, each fermion term will exactly cancel the zero-point
energy of each oscillator, provided we have zero fermions if Ai >0 and one
fermion if Ai < 0. All in all, we see that we get zero to this order if and
only if we have exactly as many fermions as unstable directions in the par-
ticular critical point.(25)

The next higher eigenvalues λ are given by, to leading order:

λ∼ 1
2

N∑
i=1

[(2Ni +1)|Ai |−Ai +2Aini)] , (28)

with Ni = 0,1,2, . . . and ni is the number of fermions (ni = 0,1) for each
direction. The spatial part of the eigenstates are Gaussians times polyno-
mials, thus having widths of order

√
T
Ai

in the ith direction so the approx-
imation is consistent at low T .

Let us call saddle of index p a critical point whose Hessian has p
negative eigenvalues, and Mp the number of these. For example the min-
ima are saddles of order 0 while the saddles of order N are maxima. From
the above considerations it follows that around each saddle of index p

there there is one and only one state with zero energy as T →0, and this
state has p fermions. This means that the Hamiltonian (4) has, to this
order, Mp p-fermion eigenstates with a zero energy. As a consequence,
there is a gap in the eigenvalues of each fermion sector, and the spectrum
looks like Fig. 2.(26)

Recalling that any non-zero energy eigenstate with p fermions has a
degenerate partner with either p−1 or p+1 fermions (cfr. Section 1), one
can read from Fig. 2 the relations:

M0 = 1+K1,

M1 = K1 +K2,

M2 = K2 +K3, (29)
...

MN = KN,

where Kp is the number of states of p fermions which have partners with
p−1 fermions. The positivity of the K’s (Ki � 0∀i) are the strong Morse
inequalities.

We have used the condition that E is defined in a space without holes.
As we have seen (see Appendix A) this implies that there is only one eigen-
state of zero energy and it has zero fermions. If the space has a more com-
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0 1 2 3 4

(3+4) (4+2) (2+1) 1  1+(3)

Gap

Fig. 2. Morse Theory. The arrows indicate the action of Q̄. The gap in the spectrum means
that the ratio of the lowest eigenvalue above the gap to the highest below the gap becomes
infinite at small T . The numbers between brackets indicate the number of states below the
gap of each fermion number decomposed as in Eq. (30); the Morse inequalities are evident
from the picture.

plicated topology, there will be several zero-energy eigenstates not paired
by the supersymmetric charges, and the Morse inequalities become slightly
more complicated (see Appendix B).

4. STATES AND TRANSITION CURRENTS

4.1. A Simple Case

In the previous section we have given the form of the spectrum, at
least to leading order, and the corresponding wave functions of every fer-
mion number – the latter in the Hermitian basis. It may seem that going
to the original basis is trivial since it is simply a matter of multiplying
those approximate wave functions by eβE/2. As mentioned above, this is
rather tricky, since the factor eβE/2 will resurrect large deviations which we
have neglected.

Let us first study the simple case of a double well at low tem-
peratures. We consider a probability distribution P evolving under the
action of the Fokker-Plank Hamiltonian (2) corresponding to an energy
as in Fig. 3. This distribution can be decomposed on the eigenstates of
the Fokker-Planck Hamiltonian (ie. the zero-fermion eigenstates of the
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(a)

(b)

(c)

(d)

10
) ψ

ψ 1R

O(1)

0R

j
1

O(e−∆/T

Fig. 3. The potential and different eigenstates along the reaction coordinate; (a) is the equi-
librium density (ψ0R), (b) the first eigenstate - the most stable (ψ1R), (c) is the current den-
sity (j1) from the first eigenstate and (d) the spectrum with the gap and the two fermionic
sectors.

Hamiltonian (13))

P(x, t)=
∞∑
α=0

cαψ
αRe−λαt , (30)

where ψ0R = e−βE while λ0 = 0. The constants cα are obtained from the
initial probability distribution as: cα = ∫ dNx ψαL(x)P (x,0).

In the low temperature limit there are two metastable states each
concentrated around one of the minima. Barrier penetration leads to the
Gibbs measure, the symmetric combination of those states. In fact the
spectrum of the Fokker-Planck Hamiltonian will contain one zero eigen-
value λ0 =0 (the Gibbs measure), one small λ1 ∼O(e−�/T ) eigenvalue and
the rest of them much larger (O(1)). The two pure states, localized on the
right and on the left are ∝ ψ0R(x)±ψ1R(x), respectively. If we are inter-
ested in the dynamics of the passage between the two wells we have to
consider times such that the fast relaxation within each well has already
taken place. At such times, larger than t1 ∼ 1

λ2
log(

c2
c1
), we are left only with

a distribution

P(x, t
 t1)� c0ψ
0R + c1ψ

1Re−λ1t , (31)

i.e. a combination of states localized to the right and to the left, depen-
dent upon the initial condition and time.
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The current at any time is given by:

j (x, t)=
(
T
∂

∂x
+ ∂E

∂x

)
P(x, t)=

∞∑
α=1

cαe
−λαt

(
T
∂

∂x
+ ∂E

∂x

)
ψαR, (32)

and its divergence reads:

∂j

∂x
= ∂

∂x

(
T
∂

∂x
+ ∂E

∂x

)
P(x, t)=−

∞∑
α=1

λαcαe
−λαtψαR. (33)

We can split the contribution of each term as:

Iα ≡λαcαe−λαtψαR. (34)

All the contributions except I 1 eventually vanish, for example:

I 2

I 1
∼ c2λ2e

−λ2t

c1λ1e
−λ1t

�1, (35)

at times such that t
 t2 ∼ 1
λ2
log(

c2λ2
c1λ1

).(28)

Equation (33) now implies that the late-time regime current j (x, t

t2) is:

j (x, t
 t2)� c1λ1e
−λ1t

∫ ∞

x

dx ψ1R(x), (36)

and can be expressed using the one-fermion right eigenstate ‘below the
gap’:

|ξ1R〉= Q̄|ψ1R〉=
∫
dx ξ1R(x) a†|x〉⊗ |−〉. (37)

as j (x, t
 t2)= ic1e
−λ1t ξ1R(x).

In Fig. 3 we summarize the situation. Note that although the state
|ξ1h〉 is sitting on the saddle (as we have seen in the previous section), its
form in the original basis |ξ1R〉= e−βE/2|ξ1h〉, which encodes the current,
is essentially a constant between the two wells.
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4.2. States

We have seen in the previous example how in the low temperature
limit one can unambiguously define metastable states using the eigenstates
of the Fokker-Planck operator. When the energy function is rough, with
several non-equivalent minima, or when the origin of metastability is not
the low temperature, the construction is less obvious. Suppose the Fokker-
Planck spectrum has K eigenstates with low eigenvalues 0, λ1, . . . , λK−1,
separated by a gap from all the higher ones. One can show(3) that, to the
extent that the gap is large (λK −λK−1 
λK−1), one can construct exactly
K distributions P0(x), . . . , PK−1(x) by linear combinations of the right
eigenstates of the Fokker-Plank Hamiltonian ψαR(x) with 0�α<K:

Pα(x)=
K−1∑
γ=0

Tαγ ψ
γR(x), (38)

such that the Pα(x) are either positive or negligible, and mutually disjoint
(the product of any two is everywhere negligible), these are the states. We
shall take the Pα(x) normalized

∫
dNx Pα(x)= 1 ∀ α. Every combination

of the right eigenstates ‘below the gap’ can be expressed as a linear com-
bination of the states. In particular, the Gibbs measure is:

ψ0R(x)=
K−1∑
α=0

T −1
0α Pα(x). (39)

A useful formula is obtained integrating (38) with respect to x, and notic-
ing that 〈ψ0L|ψαR〉=0 ∀α>0:

Tα0 =1 ∀α. (40)

The left eigenstates ‘below the gap’ are also interesting. By linear
combinations of the left eigenstates ψαL(x) with 0�α<K:

Aα(x)=
K−1∑
γ=0

Tαγ ψ
γL(x), (41)

one obtains functions Aα(x), . . . , AK−1(x) such that each Aα(x) is essen-
tially constant where Pα is non-negligible, and is negligible elsewhere. To
summarize, right eigenstates below the gap are locally Gibbsean, while the
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corresponding left ones are essentially constant within a ‘state’. The case
of very low temperatures is the the simplest one to visualize: in this case
the Pα are Gaussians sitting each one at the bottom of a local minimum,
and the Al(x) are constant within the corresponding (zero temperature)
basin of attraction of each minimum, and zero elsewhere.

The low-lying eigenvalues can also be interpreted as exit times. Under
the assumption of well separated eigenvalues, their inverses give the exit
times corresponding to the metastable states. In fact, the low-lying eigen-
values, together with their corresponding eigenstates will completely define
the long-time dynamics of the system. Indeed, one can define, from a
probability density P(x), the site-populations as

cγ =
∫
dNx Aγ (x)P (x), (42)

and obtain a master equation for cγ (t) as

dcγ

dt
=
K−1∑
ν=0

wγνcν wγν =〈Aγ |HFP |Pν〉. (43)

where the metastable distributions are now assumed to be normalized.
This master equation is accurate at times for which λKe−λKt�λK−1e

−λK−1t .
Let us conclude by mentioning that in cases in which there are more

than two separated timescales one can make this construction at more
than one level – thus obtaining different sets of states relevant for the dif-
ferent timescales.

4.3. Transition Currents from the 1-Fermion Eigenstates

Let us assume that the Fokker-Planck spectrum has exactly K eigen-
states ‘below the gap’, implying that there are K metastable states. We
shall show that, whatever the origin of the gap, exactly as in section 4.1
the K − 1 one-fermion partners of these eigenstates are the reaction cur-
rent distributions at long times (for which λKe

−λKt 
 λK−1e
−λK−1t ). This

may seem rather surprising: the construction of states in the previous sec-
tion is not a priori good in the regions where the probability is negligi-
ble. This is not important at the level of the probabilities, as those regions
carry vanishingly small weight. However, it seems to pose a problem for
the current, which is important on the barrier – in which region the prob-
ability corresponding to a state is small – and drops to zero within a state,
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precisely where the approximation described in the previous section is reli-
able. We shall argue now that, in spite of this apparent limitations, as we
have already seen in the Section 4.1, the 1-fermion partners give exactly
the long-time currents between states.

Let us make the following gedanken-experiment. At time zero we pre-
pare a probability density such that it will fall into one state, say αo,
0�αo�K−1. The initial probability density can then be written as

P(x,0)=
∞∑
α=0

cαψ
αR = cPαo(x)+

∑
α�K

cαφ
αR. (44)

We shall study P(x, t) at a time t in the middle of the gap, that is
λKt
 1 
λK−1t , a time sufficiently large so that all the fast components
become very small but not yet large enough as to populate other states.
The density is then

P(x, t)= cPαo(x)+O(e−λKt )+O(1− e−λK−1t ). (45)

Let us study now the current

Jk =
(
T
∂

∂xk
+ ∂E

∂xk

)
P =

∞∑
α=1

cαe
−λαt

(
T
∂

∂xk
+ ∂E

∂xk

)
ψαR =

∞∑
α=1

jαk , (46)

where we have discriminated the contributions to the current of each ei-
genstate

jαk ≡ cαe−λαt
(
T
∂

∂xk
+ ∂E

∂xk

)
ψαR,

(using the notations from the previous section and Eq. (45) one can see
that cα = cTαoα). The jα(x) are not normalized, so it is difficult to com-
pare them. In order to do so, we compute the divergence of the corre-
sponding terms:

divjα(x)= cαe−λαtλαψαR(x). (47)

The relative contribution to the current of two terms is of the order:∫
Vα
dNx divjα(x)∫

Vβ d
Nx divjβ(x)

∝ cαλα

cβλβ
e−t (λα−λβ), (48)

where Vα and Vα are the regions in which ψαR>0, ψβR>0 respectively.(29)
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Hence, for large enough times t (λα − λK−1)
 ln( cαλα
cK−1λK−1

), all states
α above the gap do not contribute to the current.

In conclusion, we have shown that the escape current of any metasta-
ble state is a linear combination of the currents associated to states below
the gap. This in turn means that, within this late-time regime, the current
is a linear combination of some of the one-fermion eigenstates ‘below the
gap’, those that have zero-fermion partners

∫
dNx Jk(x)a

†
k |x〉⊗ |−〉= i

K−1∑
α=1

cαe
−λαt |ξαR〉= i

K−1∑
α=1

cαe
−λαt Q̄|ψαR〉. (49)

In the next section we interpret those having a two-fermion partner.

4.3.1. Transition Times

Suppose one has the current J escaping a metastable state P(x):

Ji(x)∝
(
T
∂

∂xi
+E,i

)
P(x) ; P(x)=

K−1∑
α=1

cαψ
αR(x). (50)

We wish to give an expression for the transition time in terms of the un-
normalized current J . For this, we first compute:

∫
dNx eβE J 2 =

∫
dNx

{(
T
∂

∂xi
+E,i

)
P

}
eβE

{(
T
∂

∂xi
+E,i

)
P

}

=
∫
dNx

{(
T
∂

∂xi
+E,i

)
P

}
∂

∂xi

(
eβEP

)

=
∫
dNx P eβE HFPP =

K−1∑
α=1

λαc
2
α, (51)

and similarly:

∫
dNx eβE (divJ )2 =

∫
dNx (HFPP ) e

βE (HFPP )=
K−1∑
α=1

λ2
αc

2
α, (52)
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because the sums are dominated by the largest eigenvalues λmax within
the sum (52) that contribute to the state P(x), we have that the smallest
escape time is:

tactiv =λ−1
max =

∫
dNx eβE J 2∫

dNx eβE (divJ )2
. (53)

Note that the normalization of the current is irrelevant. This formula is
valid on the assumption of separation of timescales, irrespective of its cause.
The Kramers expression for the low-temperature case can be easily read
of this formula, since the numerator is dominated by the exponential of
the barrier height and the denominator by the exponential of the energy
of the starting well. If the current is divergence-less (a loop, as we shall
encounter later), the timescale is infinite.

An immediate conclusion one draws from Eq. (53) is that if one
knows the current with an error δJ (x), it is in the regions with large
energy (the saddles) and with large divergence (the starting region) where
this error translates into a larger error in the timescale.

4.4. Loops: Blind Saddles and Subdominant Paths

The one-fermion sector contains in general two kinds of eigenstates
states ‘below the gap’. These are those given by Q̄ acting on a zero-fer-
mion state, and those given by Q acting on a two-fermion state. The for-
mer give us the dominant reaction currents, as we have seen already. We
now show that the latter give us current loops, and in particular the the
alternative (subdominant) routes between states.

The states we are now considering are constructed as follows: given
a two-fermion eigenstate |ρR〉=∑N

ij=1 a
†
i a

†
j |ρRij 〉, we obtain a one-fermion

eigenstate as:

Q|ρR〉≡ |χR〉=
N∑
i=1

a
†
i |χRi 〉⊗ |−〉; χRi (x)=−iT

N∑
j=1

(
∂ρRij

∂xj
−
∂ρRji

∂xj

)
,

(54)

unless |χRi 〉=0. From Q|χR〉=0 we immediately conclude that field of the
right eigenstate is divergenceless:

N∑
i=1

∂χRi (x)

∂xi
=0. (55)

so that if |χR〉 encodes a single current line, it must be a closed loop.
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4.4.1. Simple Examples

A low temperature example will make things clearer. Consider the
tilted Mexican hat in two dimensions (Fig. 4): it has a minimum, a
maximum, and a ‘blind’ saddle, one that does not lead anywhere. The
two-fermion lowest eigenstate is of the form

|ρR〉=a†
xa

†
y |ρR〉⊗ |−〉, (56)

where ρR(x, y) satisfies:

−
(
T
∂

∂x
+ ∂E

∂x

)
∂

∂x
ρR(x, y)−

(
T
∂

∂y
+ ∂E

∂y

)
∂

∂y
ρR(x, y)=λρR(x, y),

(57)

which is easily obtained permuting (fermion) particles and holes in the
Hamiltonian (13). The lowest-lying one-fermion eigenstate is obtained by
noticing that the eigenvalue equation (57) corresponds to the equation sat-
isfied by the left eigenstate of a Fokker-Planck equation in a the reversed
potential −E(x, y) (cfr. Eq. (20)). From the discussion in Section4, we
conclude that ρR (the only A(x, y) for the reversed problem) is essentially
constant within the region spanned by all gradient lines descending from
the local maximum (the unstable manifold of the maximum, or the stable
manifold of the minimum of −E) – and drops sharply to zero at the bor-
der of this region. Acting with Q on ρR, we obtain the current:

(
χRx (x, y), χ

R
y (x, y)

)
∼
(
∂ρR

∂y
,−∂ρ

R

∂x

)
, (58)

which is then non-negligible on the gradient paths joining the minimum
with the saddle, because this is where ρR has a non-negligible gradi-
ent. The direction is turnaround, and clearly the flow so obtained is
divergence-free.

Let us now see the general relation between passages and loops with
another slightly more complicated low temperature example. Consider a
situation as in Fig. 5. There are four minima, multiply connected by seven
paths going through as many saddles. At low temperature, only three of
them (shown in thicker lines) have a much shorter passage time, and hence
dominate the reactions. The other four can be obtained from combina-
tion of these and the four independent loops — for example one can take
each loop going around each of the four maxima. The eigenstate struc-
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2

1

0

10 2

Fig. 4. A landscape with a minimum, a maximum and a blind saddle. Below: the low
eigenvalue spectrum for zero, one and two fermions. The dotted line is the zero level,
other eigenvalues are exponentially small in 1/T . Next higher eigenvalues start at O(1) (not
shown).

210

Fig. 5. A sketch of an energy surface with four minima (full circles), four maxima (open
circles) and seven pathways passing through one saddles. The thick paths have a low activa-
tion times. On the right the corresponding spectrum of the Hamiltonian (13).

ture ‘below the gap’ reflects this: there are four zero-fermion (right) eigen-
states corresponding to four minima. One of them is the Gibbs measure,
the other three have one-fermion partners yielding the three dominant
passages. The remaining four one-fermion (right) eigenstates correspond
to the loops, and they have two-fermion partners corresponding to the
regions they encircle, including each a maximum.
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The simple tilted Mexican hat problem, and in general any two-
dimensional situation, allows us also to understand the different roles
played by partner eigenstates below the gap in the one and two fermion
subspaces. As we have mentioned above, all the right two-fermion eigen-
states which are partners to the loops can be obtained (always in two
dimensions) from the zero-fermion left eigenstate of the inverted potential.
This means that each corresponds to a constant in the region spanned by
all trajectories descending from a saddle of index two (its unstable mani-
fold), and this will be also true in more dimensions.

4.4.2. Loops: Physical Meaning and Derivations

The loops have also a physical meaning which may be extended to
apply to the nonzero temperature situation. Consider a system in equilib-
rium to which we add a force field hf (x), h small, that has only rotational
in a restricted region D� of phase space:

∂fj

∂xk
− ∂fk

∂xj
=0 ∀j, k if x /∈D�. (59)

The effect of such a field will be to create currents which will persist even
in the stationary state. In a system with metastability, these currents can
be of two types: those generated essentially within a state, and those due
to forced passages through barriers; the latter are the loops. We shall see
that the currents within a state are given by eigenstates above, and the
loops by eigenstates below the gap of the one-fermion spectrum.

To make this clear let us go back to the tilted Mexican hat (Fig. 6).
Let us consider a force whose rotational is concentrated in a restricted
‘vorticity’ region D� (the dark region in the figure). If the vorticity is con-
centrated close to the minimum (6a) the currents generated will be due to
particles which in a rare excursion happen to fall upon D�, and then typ-
ically fall right back to the state. If we shift the D� further away from
the state, we get a behavior of the same kind until we reach a point in
which the vorticity is located higher than the saddle point, and it becomes
more probable for the current to go round the saddle (6b) through gra-
dient lines: this is the loop distribution and is essentially independent of
the exact position of D�. It is given by the (only) one-fermion eigenstate
below the gap. As we shall see below, the condition that the vorticity
generates a loop around a saddle is that it pierces the surface on which
the two-fermion eigenstate ‘below the gap’ is non-zero: this is a general
fact.
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M S

(a)

m
m M S

(b)

Fig. 6. The tilted Mexican hat seen from above. The full lines are the level lines at the
energy of the saddle (S): the light gray region is above the saddle level. The broken line cor-
responds to the gradient line going from the minimum (m), through the saddle, and back to
the minimum encircling the maximum (M). The dark gray region corresponds to the domain
D� where the drift has a non-zero vorticity. Left: D� below the saddle level - currents above
the gap; Right: D� above the saddle level - currents below the gap. See text.

In order to see this quantitatively, let us study the perturbed Fokker-
Planck equation:

H
f
FP = −

N∑
i=1

∂

∂xi

(
T
∂

∂xi
+E,i +hfi

)
, (60)

with h a small parameter and fi as above. Proposing a stationary distri-
bution of the form:

H
f
FPPst =0 ; Pst = coe−βE +hP 1, (61)

(co the normalization of the Gibbs measure) the current in the stationary
state is obtained as:

J sti =
(
T
∂

∂xi
+E,i +hfi

)
Pst =h

[
cofie

−βE +
(
T
∂

∂xi
+E,i

)
P 1
]

= he−βE
[
cofi +T ∂

∂xi

(
eβEP 1

)]
, (62)

and is zero only if the square bracket vanishes, i.e. if f derives from a
potential. The current is obviously divergence-free, and it is easy to see
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that the corresponding one-fermion state |ξR〉= ∫ dNx ∑N
i=1 J

st
i (x)a

†
i |x〉⊗

|−〉 satisfies:

Q|ξR〉 = 0, (63)

Q̄|ξR〉 = cohT e
−βE |Γ〉, (64)

where

|Γ〉=−i
(
∂fj

∂xk
− ∂fk

∂xj

)
a

†
j a

†
k |−〉. (65)

Equation (63) implies that |ξR〉 can be developed in terms of
one-fermion eigenstates with two-fermion partners. Multiplying the Eq. (64)
by Q, we obtain:

|ξR〉= cohH ′−1Qe−βE |Γ〉= cohH ′−1e−βEQ̄†|Γ〉, (66)

where H ′ is H restricted to the one-fermion subspace. Developing (66) in
a basis, we find:

|ξR〉= coh
∑
α

1
λα

|ξαR〉〈�|Q̄|ξαR〉. (67)

Defining as H+ and H− the projections of H ′ above and below the gap,
respectively, we introduce the components of the current distribution:

|ξRstate〉 = cohH
−1
+ e−βEQ̄†|Γ〉,

(68)
|ξRtour 〉 = cohH

−1
− e−βEQ̄†|Γ〉.

We can bound:

‖ |ξRstate〉 ‖2 = (coh)
2 〈Γ|Q̄e−βEH−1†

+ H−1
+ e−βEQ̄†|Γ〉

� λ−2
+min (coh)

2 〈Γ|Q̄e−2βEQ̄†|Γ〉, (69)

where λ+min is the smallest eigenvalue of H in the one-fermion sub-
space above the gap and we have used 〈ψ |AA†|ψ〉� |αmax |2〈ψ |ψ〉, with
|αmax | the maximal eigenvalue of A. As 〈x|Q̄†|Γ〉 is nonzero only in the
rotational region D� where it can be taken of order one, in the low
temperature limit 〈Γ|Q̄e−2βEQ̄†|Γ〉1/2 ∼ e−βE� where E� =min{E(x)|x ∈
D�}. Given that λ−2

+min is of order one and co is the normalization of
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the Gibbs distribution, the contribution above the gap will bounded as
‖|ξR

state〉‖ � coe−βE� ∼e−β(E�−Emin), exactly what we expect of a process that
starts in a minimum and climbs up to the region D� of energy E� where
the vorticity is important, and falls back again.

The contribution of eigenstates below the gap is instead given by
the loops, a fact we shall show in general in the low temperature limit.
The physical meaning of the two-fermion wave functions below the gap
|χα〉 ≡ Q̄|ξαR〉, is now clear from Eq. (67): the factor 〈Γ|Q̄|ξαR〉 will
be important only if the ‘vorticity’ � intersects the region where the
two-fermion eigenstate |χα〉 ≡ Q̄|ξαR〉 is non-negligible. Hence, each two-
fermion partner of a one-fermion eigenstate below the gap defines the
region where a vorticity has to be applied in order to excite a current
through the corresponding loop. In the low temperature case, one expects
the current through the saddle to be of order eβ(Esaddle−Emin). If E� >
Esaddle the contribution of the loops dominate, and the bound above
means that it can only be given by the eigenstates below the gap. Since
in simple systems there are only a few of those, the distribution will not
change dramatically with small changes of the vorticity location.

In the general case of systems with a gap in timescale, but with non-
zero temperature, one can still consider forces whose vorticity is ‘near’ or
‘far’ from a state, and computing the currents induced one can take the
construction as a basis for a definition of ‘loop’. An interesting question
is to analyze the effect these loops have in the series development of the
free energy, an analysis à la Langer(2) would clarify the issue.

4.5. Induced Currents and Holes

One of the cases in which it is interesting to calculate currents is when
we apply a constant electric field and join the ends of the sample. We
create thus a manifold with a hole inside. Up to now we have excluded
such situations, and indeed some modifications to the arguments have to
be taken into account. Consider the simple example of a particle in a
one-dimensional ring with coordinate x, with 0�x�2π , and no potential.
Both the Fokker-Planck and supersymmetric operators read:

H = 1
T
(Q+ Q̄)2 =−T ∂2

∂x2
=HFP , (70)

with

Q=−iT
∂

∂x
a ; Q̄=−iT

∂

∂x
a†. (71)
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The zero fermion states are ∝ eikx , with k any integer. In particular, the
zero-fermion ground state is a constant, ψ0R(x) = 1

2π as expected. On
the other hand, one-fermion states are also of the form ∝ eikxa†|−〉: we
find that we have a one-fermion eigenstate with zero eigenvalue |ξ0R〉 =

1
2π a

†|−〉, a possibility that we had excluded for spaces without holes (see
Appendix A). Furthermore, the one-fermion ground state has no partner:
|ξ0R〉 �= Q̄|ψR〉. The situation changes when we add a constant field E , so
that now:

H = 1
T
(Q+ Q̄E )2 =− ∂

∂x
(T

∂

∂x
+E)=HFP , (72)

with

Q=−iT
∂

∂x
a; Q̄E =−i(T

∂

∂x
+E)a†. (73)

The eigenstates do not change, and we still have the same one and zero-
fermion ground states, but now, remarkably:

−iE |ξ0R〉= Q̄E |ψ0R〉 �=0, (74)

so that one and zero fermion ground states have become partners. We also
conclude that the meaning of the one-fermion ground state is to give the
stationary current distribution around the ring. A last point to see in this
simple example is that when the field is on, the force does not derive glob-
ally from a potential (E= Ex would be multiply valued), and we cannot
change globally to the Hermitian basis!

Consider in general diffusion in a space with a hole, so that
we can have a force field f with everywhere ∂fj

∂xi
= ∂fi

∂xj
but not deriving

from a global potential. We consider a small perturbation

H
f
FP = −

N∑
i=1

∂

∂xi

(
T
∂

∂xi
+E,i +hfi

)
, (75)

with h a small parameter. Proposing as before a stationary distribution of
the form: Pst = coe−βE + hP 1 the current in the stationary state is again
given by (62). It is easy to see that the corresponding one-fermion state
|ξR〉=−i

∫
dNx

∑N
i=1 J

st
i (x)a

†
i |x〉⊗ |−〉 now satisfies:

Q|ξR〉=0, Q̄|ξR〉=0. (76)
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Also:

|ξR〉 = Q̄f |Pst 〉=−i
[
T
∂

∂xi
+Ei +hfi

]
|Pst 〉

= −ihe−βE
N∑
i=1

a
†
i

[
cofi +T

∂
(
eβEP1

)
∂xi

]
|−〉. (77)

Just as in the previous example, we have shown that it is the nonconserva-
tive field that makes |Pst 〉 and |ξR〉 become partners (otherwise the last of
(77) is empty), and the physical interpretation is that each zero eigenvalue
one-fermion eigenstate corresponds to a current induced around a hole by
small fields. Again, for the perturbed Hamiltonian H

f
FP one cannot con-

struct a global Hermitian basis as for HFP .
Let us conclude this section with an alternative variational interpreta-

tion for the loops. Suppose we ask which is the field f such that it max-
imizes the power W = ∫ dNx ∑N

i=1 fiJ
st
i done on the system, while having

the minimal Gibbs expectation V for its violation of detailed balance (the
‘vorticity’):

V ≡
∫
dNx e−βE

∑N
jk=1(

∂fj
∂xk

− ∂fk
∂xj
)2∫

dNx e−βE
. (78)

A simple calculation using (64) yields:

F = V

W
∝
∑
α� 1 c

2
αλα∑

α� 1 c
2
α

, (79)

where cα = ∫
dNx

∑N
k=1 fkξ

αR
k and |ξαR〉 are 1-fermion eigenstates anni-

hilated by Q (the ‘loops’). In conclusion F is minimized if f is a left,
1-fermion eigenstate ‘below the gap’. Clearly, the definition is valid at arbi-
trary temperatures.

5. THE BIG PICTURE

5.1. Low Temperature Structures

At low temperatures eigenstates peak on structures with dimensions
smaller than N , and fall of exponentially away from them, in a width that
vanishes with T . Right eigenstates ‘below the gap’ are made of linear com-
binations of functions peaked on the following structures:
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• Zero fermions: points, the local minima.
• One fermion: gradient lines joining minima through saddle points. The

eigenstates with a zero-fermion partner are the true, open paths, and
those with two-fermion partners are closed loops.

• Two fermions: Two-dimensional surfaces containing a saddle with two
unstable directions, spanned by all the descending gradient lines ema-
nating from it. The eigenstates with a one-fermion partner are peaked
on open surfaces (surfaces with borders), and those with three-fermion
partners are peaked on closed surfaces (borderless surfaces).

The physical property of the open surfaces is that a weak nonconser-
vative field f will generate a current turning around their border, and this
only if the ‘vorticity’ region in which

(
∂fj
∂xi

− ∂fi
∂xj

)
�=0 intersects them.

• k fermions: k-dimensional surfaces containing a saddle of index k,
spanned by all gradient lines descending from it (the unstable manifold
of the saddle).

Again, the eigenstates with k − 1 fermion partners are peaked on
open, and those with k+ 1-fermion partners on closed surfaces. The bor-
der of the surface associated with the former is the region where the k−1
fermion partners are peaked.

Left eigenstates ‘below the gap’ can be obtained using the fact that a
left eigenstate with k fermions is a right N − k fermion eigenstate of the
problem with the inverted potential −E (cfr. Eq. (20)).

One thus concludes that k fermion left eigenstates are made of linear
combinations of functions peaked on the following structures:

• Zero fermions: constant within a basin of attraction of each minimum
(a well known fact).

• One fermion: N − 1 dimensional basin of attractions of saddles (them-
selves subsets of the borders between basins).

• Two fermions: N − 2 dimensional basins of attraction of saddles with
two unstable directions.

• k fermions: N−k-dimensional surfaces spanned by the set of descending
paths terminating in each saddle of index k (i.e., the basins of attrac-
tions of these saddles).

This is the structure of basins within basins that was argued is rel-
evant in systems with slow dynamics.(30) One can again distinguish open
and closed surfaces, and this is related to whether the wave function of k
fermions has a partner with k−1 or k+1 fermions.

Each of the right eigenstates below the gap are peaked on unstable
manifolds of the corresponding critical point, while the left eigenstates are
peaked on the stable manifolds. In this frame, the Q̄ and Q operators act
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as ‘boundary operators’ generating what is called in the mathematical lit-
erature the Morse (co)homology. We shall derive these results construc-
tively in the next section.

A simple, three-dimensional example will illustrate this. Consider the
energy E(x, y, z)= e(x)+ e(y)+ e(z), where e(xi) is the symmetric double-
well potential of Fig. 3. The landscape is defined by a cube with minima
in its 8 vertexes, 12 saddles of index 1 midway along its sides, 6 saddles
of index 2 at the face centers and one saddle of index 3 at the cube’s
center. The right eigenstates below the gap are as follows i) 8 with zero
fermions located at the vertices’s, ii) 12 with one fermion located on the
sides, of which seven are passages and five are loops along the perime-
ter of the faces, iii) 6 with two fermions peaked on the faces, of which
five are independent open faces and one is the total (closed) surface of the
cube, and iv) one with three fermions constant inside all the interior of the
cube.

5.2. Defining ‘Free energy’ Structures

The zero-temperature limit allows us to see very clearly the differ-
ent structures that emerge. However, the main point of this paper is that
these can be transferred to a more general situation, provided that there
is timescale separation – whatever its origin. As we have seen already,
the role of local minima in the low-temperature situation is taken by
metastable states, and the role of gradient lines by reaction current dis-
tributions. In the previous section we also attempted a general defini-
tion of ‘reaction loop’, on the basis of the currents that can be induced
by a non-conservative weak force. One has the possibility of also defin-
ing higher structures associated with fermion subspaces of higher fer-
mion numbers, (like borders, basins etc.) in general. In problems in
which one can define a free-energy landscape in a precise way (typically
mean-fieldish situations), the structures we have defined should recover
their geometric appearance: states becoming points, reaction distributions
becoming lines, etc, but now in the free-energy landscape, in which each
point stands for many configurations. The importance of the construction
we have been describing is that it does not rely on such a landscape: the
only assumption is timescale separation. Once this is given, the Morse-
theory constraints on the objects follow automatically, thus showing that
the construction makes geometric sense. We shall also see in what fol-
lows how these structures are be approached by higher forms of stochastic
equations.



1230 Tănase-Nicola and Kurchan

6. DIFFUSION DYNAMICS

6.1. Dynamics

In order to obtain the currents we must find eigenstates of the super-
symmetric Hamiltonian (13) ‘below the gap’ in the 1-fermion sector. This
may be achieved by solving Eq. (6) at times larger than the microscopic
times starting from several initial configurations. In the zero-fermion case,
one in fact simulates the Langevin dynamics (1) rather than solving the
Fokker-Plank equation, in order to obtain metastable states. The ques-
tion naturally arises as to which is the diffusion equation that reproduces
Eq. (6) in the one fermion subspace, and more generally in any K-fermion
subspace.(31)

Let us do this for one-fermion wave functions first.
Consider first one particle carrying an N -component vector degree of

freedom u. Let the position of the particle evolve as a Langevin process
(1), and the vector u as:

u̇i =−
N∑
j=1

Eij (x)uj . (80)

From Eqs. (1) and (80), we have that the joint distribution function
F̃ (x,u, t) evolves then as:

∂F̃ (x,u, t)

∂t
=

−HFP +

N∑
ij=1

∂

∂ui
E,ij uj


 F̃ (x,u, t). (81)

Consider now the evolution of the partial averages:

Ra(x, t) =
∫
dNuua F (x,u, t), (82)

∂Ra(x, t)

∂t
=
∫
dNuua

∂F̃ (x,u, t)

∂t

=
∫
dNuua


−HFP +

N∑
ij=1

∂

∂ui
E,ij uj


 F̃ (x,u, t)

= −HFPRa(x, t)−
N∑
j=1

EajRj (x, t), (83)

where we have integrated by parts on ua . This is Eq. (7), as announced.
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The evolution as in Eqs. (80) and (81) has the problem that the parti-
cle may very rarely visit a given region of space, but once it does so have
large components for u. A practical modification is to preserve the norm
of the vector attached to the particle. Putting v≡u/|u| we obtain the fol-
lowing equation for a function F(x,v, t):

∂F (x,v, t)

∂t
=

−HFP +

N∑
ij=1

∂

∂vi

{
E,ij vj −vi

N∑
kl=1

vkvlEkl

}

−
N∑
kl=1

vkvlEkl

]
F(x,v, t). (84)

Computing the evolution of the partial averages

Ra(x, t)=
∫

|v|2=1
dv va F (x,v, t), (85)

the result is again Eq. (7). The diffusional process involved is however
quite different. The first term in the square bracket in Eq. (84) tells us that
the dynamics of the particle is still of the Langevin form. The second term
now gives for the evolution of v:

v̇i =−
N∑
j=1

Eij (x)vj +vi
N∑
kl=1

vkvlEkl, (86)

which preserves the condition ‖v ‖ = 1. The third in (84) is a ‘clon-
ing’ term, creating and destroying particles at a rate

∑N
kl=1 vkvlEkl .

(33) In
Fig. 7 we show the numerical solution of the diffusion equation for vector
walkers in a potential.

6.2. Low Temperature Structures

Let us now use the equations for v to show that at low temperatures
the eigenstates with eigenvalues close to zero correspond to lines joining
minima through the saddles. At low temperatures, particles fall along gra-
dient lines:

ẋi =−E,i(x). (87)

Assume that the distribution consists of particles sitting along an isolated
gradient line, and having vi =Ei/|∇E|. Putting this into (86), we find that
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Fig. 7. Snapshot of a population of walkers in the stationary state. The potential is taken
from.(37) It has two minima (right and left), two saddles (top and bottom) and a maximum
in the center.

the condition vi =Ei/|∇E| is preserved as particles fall along the gradi-
ent line. On the other hand, the depletion of particles along the trajectory
consists of a term due to migration − dẋ�

d�
= d∇E·v

d�
(d� the element length

along the line), and of cloning
∑N
kl=1 vkvlEkl : both terms cancel since d�

is parallel to v. Hence, a uniform distribution of particles along a gradi-
ent line with vi =Ei/|∇E| is stable, provided nothing happens at the ends.
Now, the only possibility for the ends not to destroy stability is that they
are stationary points, so that there is no particle exchange there. Further-
more, the distribution has to be in particular peaked along a path join-
ing two minima through a saddle of order one. The reason is as follows:
particles are constantly falling, the measure is preserved because there is a
high birth rate near the saddle. Now, if the saddle in question is of index
higher than one, the slightest noise will make particles that are born near
it emigrate in other directions, as there is more than a single descent path
in that case, rendering the solution along a single gradient line unstable.
Also, if d� and v are not initially parallel, they will become so only on
the saddle of index one. A stable one-fermion solution on a higher dimen-
sional surface is on the other hand impossible because the surface expan-
sion rate is no longer compensated by the cloning.

In Appendix C we give the generalization of the evolution equa-
tions for higher fermion numbers, and we use them to generalize this
argument to show the result announced in the previous section that
low-temperature k-fermion eigenvalues below the gap are linear combina-
tions of constant densities filling the surfaces spanned by all the descend-
ing paths emanating from saddles of order k. The argument is entirely
similar to the one for the one-fermion sector: each particle has a k-form
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attached to it, whose distribution is preserved as it falls down. The clon-
ing term precisely compensates the effect of the redistribution of particles,
and the solution for k forms is unstable unless particles are born near a
saddle of index k.

6.3. Long-Time Evolution of v

At times longer than the inverse of the lowest one-fermion eigenvalue,
one can expect that F(x,v, t) will converge to a stationary distribution
symmetric in v:

lim
t→∞F(x,v, t)=F

eq(x,v), F eq(x,v)=Feq(x,−v) ∀v, (88)

and the averages (85) vanish

R
eq
a (x, t)=

∫
|v|2=1

dNv va F
eq(x,v, t)=0. (89)

To compensate the mean death rate, the usual practice in Diffusion Monte
Carlo schemes is to add an overall cloning probability (see ref. 33). In any
case, one can show that Feq(x,v) itself will be peaked on paths at low
temperatures. To do this, it suffices remake the argument of Section 5.1.

7. PATH SAMPLING: LYAPUNOV WEIGHTS

The same ideas can be written in the path-integral formalism. Let us
start by computing

I (x0,x1) =
N∑
i=1

〈−|⊗〈x0|ai e−Ht a†
i |x1〉⊗ |−〉

=
∑
α� 1

N∑
i=1

ξαLi (x1)ξ
αR
i (x0) e

−λαt

=
∑
α� 1

N∑
i=1

ξαhi (x1)ξ
αh
i (x0) e

−λαt . (90)



1234 Tănase-Nicola and Kurchan

Because H is quadratic in the fermions, the evolution for the a†
i is linear,

and we have in terms of the trajectories:(34,35)

I (x0,x1) =
〈∫

D[paths] TrUpath �l δ[ẋl +E,l −ηl ]
〉
η

=
∫
D[paths] TrUpath e

−Spath , (91)

where the sum is over all paths going from x1 to x0, and the average is
over the noise η realization. Spath is the usual Langevin action(34)

Spath=
∫ t

0
dτ

1
4T

N∑
i=1

[ż2
i +E2

,i −2T E,ii ]+ 1
2T

[E(x1)−E(x0)]. (92)

U(t) is the matrix solution of the linear equation

U̇ij =−
N∑
k=1

E,ikUkj U(0)= I , (93)

which depends on the path through E,ik. It describes the linear transfor-
mation of a small region around the trajectory, defined by a set of nearby
initial conditions and the same thermal noise. With these notations, we
have:

I (x0,x1)=
∑
α� 1

N∑
i=1

ξαhi (x1)ξ
αh
i (x0)e

−λαt =
∫
D[paths] e−(Spath−L

1
path),

(94)

where we have defined the (pseudo) Lyapunov exponent (with the time
included!), for large t :

L1
path= ln

[
TrUpath

]
. (95)

The prefix ‘pseudo’ is a reminder of the fact that actually, true Lyapunov
exponents is defined on the basis of the trace of UU†. For x0 = x1 our
matrix U is symmetric on average 〈Uij 〉=〈Uji〉 (a consequence of detailed
balance), but not along a single trajectory. We shall return to this point
later. For large t , L1

path= ln |λUmax | where λUmax is the eigenvalue of Upath
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with the largest real part. Note that L1
path can be calculated for long times

by considering the path and a nearby path starting from an initial con-
dition close to x0 and evolving with the same noise, just as in the com-
putation of an ordinary Lyapunov exponent, or on the basis of the force
required to keep the distance between paths fixed.

Consider the trajectories weighted with the modified action (94). We
wish to know the distribution of x at an intermediate time t ′. Let us com-
pute the expectation of an arbitrary function B(x) at t ′:

〈B(t ′,x0,x1)〉
= I−1(x0,x1)

∫
dNx

N∑
i=1

〈−|⊗〈x0|aie−(t−t ′)HB(x)e−t ′Ha†
i |x1〉⊗ |−〉

= I−1(x0,x1)

∫
dNx

∑
αβ� 1

N∑
i=1

ξαLi (x1)ξ
αR
i (x0)

×〈ξαL|B(x)|ξβR〉e−λβ(t−t ′)−λαt ′ . (96)

Considering t ′ and (t − t ′) longer than the microscopic times but
much shorter than the passage times one can retain only the contributions
‘below the gap’:

〈B(t ′,x0,x1)〉 = I−1(x0,x1)

∫
dNx

∑
αβ� 1

N∑
i=1

ξαLi (x1)ξ
αR
i (x0)

×〈ξαL|B(x)|ξβR〉. (97)

Now, if x0 and x1 are at the states at the ends of a reaction, the factor

N∑
i=1

ξαLi (x1)ξ
αR
i (x0)=

N∑
i=1

ξαhi (x1)ξ
αh
i (x0)e

−βE(x1), (98)

selects the relevant currents,(36) and we obtain:

〈B(t ′,x0,x1)〉∼
∫
dNx 〈ξL|B(x)|ξR〉 =

∫
dNx 〈ξh|B(x)|ξh〉

=
∫
dNx ‖ ξh(x)‖2B(x), (99)

where we have assumed the reaction is given by a single |ξR〉. What we
have shown is that long paths sample the barrier ‖ξh(x)‖. In other words,
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Fig. 8. One typical trajectory with the ends fixed in two different metastable states sampled
with Lyapunov+Langevin action. Same potential as in Fig. 7.

trajectories have ends of the order of the microscopic time in x1 and x0,
but otherwise spend most of their time in the barrier: see Fig. 8.

If we consider closed paths without restrictions on the starting point,
we have:∫

dNx0 〈B(t ′,x0,x0)〉=
∫
dNx0 d

Nx
∑
αβ� 1

N∑
i=1

ξαLi (xo)ξ
αR
i (x0)〈ξαL|B(x)|ξβR〉

=
∑
αβ� 1

∫
dNx 〈ξαL|ξβR〉〈ξαL|B(x)|ξβR〉

=
∑
α� 1

N∑
i=1

∫
dNx |ξαhi (x)|2B(x), (100)

where the sums are only over the ‘eigenvalues below the gap’; this means
that we perform a flat sampling over all barriers: see Fig. 9. If instead
of ‖ξh(x)‖2 we wish to sample the squared current

∑N
i=1 ξ

R
i ξ

R
i = e−βE

‖ξh(x)‖2, we have to add a Gibbs weight at a single time in the closed
path measure.

We can of course fix only one end, and the situation obtained is as
in Fig. 10 sampling the escape paths from one metastable state.

7.1. Higher Index Barriers

The procedure outlined above can be generalized in a straightforward
way to higher indices. One starts from:

I (k)(x0,x1)=
N∑

i1,...,ik=1

〈x0|ai1 . . . aik e−Ht a†
i1
. . . a

†
ik
|x1〉, (101)
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Fig. 9. One typical closed trajectory sampled with Lyapunov+Langevin action. Same
potential as in Fig. 7.
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Fig. 10. One typical trajectory with one end fixed in a metastable state and the other left
free, sampled with Lyapunov+Langevin action. Same potential as in Fig. 7.

which will select the k-fermion eigenstates ‘below the gap’. Again, the evo-
lution of each fermion is linear, and a straightforward calculation(39,35)

shows that the path-integral reads:

I (k)(x0,x1)=
∫
D[paths] e−(Spath−L

(k)
path), (102)

where L(k)path is the (pseudo) Lyapunov exponent, defined as

L
(k)
path= ln


 N∑
i1,...,ik=1

detp(U, i1, . . . , ik)


 , (103)

where detp(U, i1, . . . , ik) are the k minors of U.
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For large t , L(k)path is the sum of the logarithms of the k eigenvalues

Upath having the largest real parts. L(k)path is a measure of the expansion
of k-dimensional surfaces defined by nearby trajectories subjected to the
same noise.(35) Just as before, trajectories weighted with L(k)path will pile up
in index k barriers.

Before concluding this section, let us point out that, unlike the true
Lyapunov exponents defined in terms of U†U, the ones we are using here
are real on average, but there could be rare trajectories for which they are
imaginary. The practical procedure is then to separate trajectory space in
those that have a real, and those that have imaginary value of L(k)path. As

usual in these cases, the separation is natural since L(k)path diverges in the
frontier.

8. CONCLUSIONS

In this article we have shown how the constructions based on super-
symmetry can shed new light on statistical mechanical questions, providing
definitions and computational schemes for barriers beyond the low-tem-
perature or the mean-field cases.

We have deliberately avoided maximal generality at each step, in vari-
ous cases leaving the most general derivations for the Appendices. We have
also not attempted full mathematical rigor. The aim has been to convince
the reader that all developments are elementary, though we believe quite
useful. There are three important omissions:

• Continuous symmetries, leading to non-isolated saddle points and bar-
riers: the subject of degenerate Morse theory.(17) The formalism adapts
itself rather naturally to this case, so we are confident that the discus-
sion in this direction can be made more complete.

• Dynamics with inertia (Kramers equation). This is important for prac-
tical applications, in which reaction paths have to be found in systems
with inertia.

Hamilton’s equations do possess a supersymmetry, as shown by Go-
zzi and Reuter (see ref. 39, and references therein), who used it to rede-
rive some very early results by Ruelle(40) where Hamiltonian, as opposed
to Langevin, dynamics is used to study the topology of the space. Part of
this supersymmetry survives for the Kramers equation,(41) so the results
in this paper, and indeed all the construction related to Morse Theory,
can be extended to that case. This is a promising line of research, with
a considerable number of applications including, apart from the study of
reaction paths, the determination of Ruelle-Pollicott resonances in chaotic
systems.
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• One can ask if the approach presented in this paper is applicable only
to smooth energy functions in space, since there are real problems with
energy functions which have singularities: exclusion or Coulomb inter-
actions, hard walls, etc. It is possible to obtain rules for the behavior of
particles (or rather, the forms attached to them) after a collision with a
hard wall without having to integrate the bounce trajectory every time,
by deriving the effect of a regularized wall in the limit of infinite steep-
ness. Using this method it is possible to construct diffusion equations
for problems which are entirely entropic, such as hard spheres.

• The question of the application to full quantum evolution remains open.
There is of course the less general possibility of coupling the present
scheme to a Carr-Parrinello approach, the dynamics being essentially
classical in that case.

Work is in progress,(42,41) stimulated by the prejudice that things that
are pleasant should also be useful.

APPENDIX A

In his Appendix we sketch the proof that the only zero energy eigen-
states of the Hamiltonian (13) is the Gibbs measure (22). The proof will
be made using the hermitian basis.

Each eigenstate |ψh〉 of energy zero must be annihilated by both Q

and Q̄. Indeed, the definition of the zero-energy state:

0 = 〈ψh|Hh|ψh〉
= 〈ψh| 1

T
(Q̄h+Qh)2|ψh〉

= 〈ψh| 1
T
(Q̄h†Q̄h+Qh†Qh)|ψh〉

= 1
T
(‖ Q̄h|ψh〉 ‖2 +‖Q|ψh〉 ‖2), (A1)

is equivalent to

Qh|ψh〉=0, Q̄h|ψh〉=0. (A2)

Let |ψh〉 be a state with p> 0 fermions such that Q̄h|ψh〉= 0. If we
construct the state

|χh(y)〉= ie−βE(y)/2
∫ 1

0
dt tp−1

N∑
i=1

yiaie
βE(yt)/2|ψh(yt)〉, (A3)
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one can easily verify that

Q̄h|χh〉= |ψh〉. (A4)

This in turn means that

〈χh|Qh|ψh〉=〈ψh|Q̄h|χh〉=‖ |ψh〉 ‖2>0, (A5)

which is incompatible with Qh|ψh〉 = 0; we have proved that states with
1 fermion or more cannot be annihilated simultaneously by Q̄h and Qh

therefore they cannot have zero energy.(43)

On the other hand, if |ψh〉 has no fermions, Eq. (A2) can be written
as:

(
T
∂

∂xi
+ 1

2
E,i

)
ψh(x)=0 ∀i, (A6)

and this has only one solution ψh(x)= coe−βE(x)/2 (22).
Using standard arguments one can show that, for an energy E

bounded from below and satisfying Eq. (8), |χh〉 and e−βE/2 have a norm,
and thus are in the Hilbert space associated with Hh. The conclusion is
that the only zero energy state of Hh is

|ψ0h〉= e−βE/2 ⊗|−>. (A7)

APPENDIX B

In this appendix we write the Morse inequalities derived in Section 3
for the trivial topology in a more general context. The number of exact
zero energy states, for each fermion sector (let us call them Bp) does not
depend on the energy but only on the topology of the space. To see this,
suppose that the energy is changed by E(x)→E(x)+δE(x). A short com-
putation yields, to first order:

δHh=− 1
2T

[
N∑
i=1

δE,iai , Q̄
h

]
+

+ 1
2T

[
N∑
i=1

δE,ia
†
i , Q

h

]
+
, (B1)

and this has zero matrix elements between states with zero eigenvalue, as
they are annihilated by the charges. First order perturbation theory tells us
then that the eigenvalues stay zero. One can also exclude the possibility of
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a non-zero eigenvalue becoming zero, by applying the previous argument
to the reverse perturbation.

For RN , we have shown that the Bp are

B0 =1, B1 =0, . . . , BN =0. (B2)

Thus, following the same arguments as in Section 3 one can write
generalize the equalities (30) to:

M0 = B0 +K1,

M1 = B1 +K1 +K2,

(B3)...

MN = BN +KN.

where, again, Ki >0,∀i.

APPENDIX C

The evolution Eq. (6)

dψ

dt
=−H ψ, (C1)

for a vector

ψ=
N∑

i1,...,ik=1

ψi1,...,ik a
†
i1
. . . a

†
ik
|−〉, (C2)

reads, in components (see Eq. (13)):

ψ̇i1<···<ik =
∑
σα

(−1)n(σ,α) Eσ(i1),α ψσ(i2),...,α,...,σ (ik), (C3)

where σ denotes all permutations of k indices, and n(σ,α) is the sign
of the permutation (i1, i2, . . . , α, . . . , ik)→ (α, σ (i1), σ (i2), . . . , σ (ik)). The
ψσ(i1),...,σ (ik) are antisymmetric with respect to permutations of indices.
Proposing the evolution for functions of F̃ (x,u, t), where u is the set
ui1,...,ik , themselves completely antisymmetric:
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dF̃

dt
= −


HFP −

N∑
i1,...,ik=1

∂

∂ui1,...,ik

∑
σ,α

(−1)n(σ,α) Eσ(i1),α uσ(i2),...,α,...,σ (ik)




× F̃ (x,u, t), (C4)

we can check integrating by parts that ψi1,...,ik (x)=
∫
dNuui1,...,ik F̃ (x,u, t)

evolves according to Eq. (C3). This in turn means that x evolves accord-
ing to the Langevin equation, while

u̇i1,...,ik =−
∑
σα

(−1)n(σ,α) Eσ(i1),α uσ(i2),...,α,...,σ (ik). (C5)

We can also write an equation for normalized variables:

vi1,...,ik = ui1,...,ik√∑N
j1,...,jk=1 u

2
j1,...,jk

, (C6)

such that Eq. (C4) becomes:

dF

dt
= −


HFP −

N∑
i1,...,ik=1

∂

∂vi1,...,ik

×
{∑
σα

(−1)n(σ,α)Eσ(i1),α vσ(i2),...,α,...,σ (ik)−vi1,...,ik N (v)

}

+ N (v)

]
F(x,v, t), (C7)

where:

N (v)=
N∑

i1,...,ik=1

vi1,...,ik

∑
σα

(−1)n(σ,α) Eσ(i1),α vσ(i2),...,α,...,σ (ik). (C8)

The particles perform Langevin diffusion, while the equation of motion
for the v read:

v̇i1,...,ik =−
∑
σα

(−1)n(σ,α) Eσ(i1),α vσ(i2),...,α,...,σ (ik)−vi1,...,ik N (v), (C9)

thus preserving the normalization (C6). There is also cloning, proportional
to N (v).
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The equations of motion for v have an interesting interpretation.
Consider a point x and a small oriented k-volume element determined by

V k ≡ (x+ δx1)∧ (x+ δx2)∧· · ·∧ (x+ δxk)
= M

N∑
i1,...,ik=1

vi1,...,ik êi1 ∧· · ·∧ êik , (C10)

where ∧ is the external (wedge) product and ê1 are the basis vectors. We
have separated the norm M from the (normalized) ‘direction’ v of V k. It
is straightforward to see ref. 35 that Eq. (C9) indeed gives the evolution
of v as the points are carried by the drift, and N = Ṁ gives the expan-
sion rate of the norm of V k. This property is at the basis of the use of
the present formalism to study Lyapunov exponents.(35)

Now we can outline a proof that the right k-fermion eigenstates
‘below the gap’ are concentrated on k-dimensional surfaces spanned by
the trajectories descending from a saddle of index k. Let us propose that
on such surface we have particles whose v at each point is tangential to
such a surface (i.e. it can be generated as in Eq. (C10)), and the density
of such particles is constant along the surface. Both features are preserved
by the evolution. First, as the particles go downhill, their forms change so
as to remain tangential: this is because their evolution are precisely based
on the linearized equation on the tangential space. Secondly, the cloning
rate is exactly opposite to the expansion rate of a small volume advected
downhill: as a region expands its population increases and vice-versa. Fur-
thermore, close to the saddle point the surface density expansion rate is
−A1, . . . ,−Ak, (Ai the Hessian’s eigenvalue) while the cloning rate for a
p-form is: −A1, . . . ,−Ap. Because by assumption A1 < 0, . . . ,Ak < 0 and
Ak+1 > 0, . . . ,AN > 0, the cloning is insufficient to maintain a stationary
situation unless p=k.
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